Основные первообразные. Главные интегралы, которые должен знать каждый студент

Основные первообразные. Главные интегралы, которые должен знать каждый студент

Интегрирование - это одна из основных операций в матанализе. Таблицы известных первообразных могут быть полезны, но сейчас они, после появления систем компьютерной алгебры, теряют свою значимость. Ниже находится список больше всего встречающихся первообразных.

Таблица основных интегралов

Другой, компактный вариант

Таблица интегралов от тригонометрических функций

От рациональных функций

От иррациональных функций

Интегралы от трансцендентных функций

"C" – произвольная константа интегрирования, которая определяется, если известно значение интеграла в какой-либо точке. Каждая функция имеет бесконечное число первообразных.

У большинства школьников и студентов бывают проблемы с вычислением интегралов. На этой странице собраны таблицы интегралов от тригонометрических, рациональных, иррациональных и трансцендентных функций, которые помогут в решении. Еще вам поможет таблица производных .

Видео - как находить интегралы

Если вам не совсем понятна данная тема, посмотрите видео, в котором всё подробно объясняется.

Определение 1

Первообразная $F(x)$ для функции $y=f(x)$ на отрезке $$ - это функция , которая является дифференцируемой в каждой точке этого отрезка и для ее производной выполняется следующее равенство:

Определение 2

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Из таблицы производных и определения 2 получаем таблицу основных интегралов.

Пример 1

Проверить справедливость формулы 7 из таблицы интегралов:

\[\int tgxdx =-\ln |\cos x|+C,\, \, C=const.\]

Продифференцируем правую часть: $-\ln |\cos x|+C$.

\[\left(-\ln |\cos x|+C\right)"=-\frac{1}{\cos x} \cdot (-\sin x)=\frac{\sin x}{\cos x} =tgx\]

Пример 2

Проверить справедливость формулы 8 из таблицы интегралов:

\[\int ctgxdx =\ln |\sin x|+C,\, \, C=const.\]

Продифференцируем правую часть: $\ln |\sin x|+C$.

\[\left(\ln |\sin x|\right)"=\frac{1}{\sin x} \cdot \cos x=ctgx\]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 3

Проверить справедливость формулы 11" из таблицы интегралов:

\[\int \frac{dx}{a^{2} +x^{2} } =\frac{1}{a} arctg\frac{x}{a} +C,\, \, C=const.\]

Продифференцируем правую часть: $\frac{1}{a} arctg\frac{x}{a} +C$.

\[\left(\frac{1}{a} arctg\frac{x}{a} +C\right)"=\frac{1}{a} \cdot \frac{1}{1+\left(\frac{x}{a} \right)^{2} } \cdot \frac{1}{a} =\frac{1}{a^{2} } \cdot \frac{a^{2} }{a^{2} +x^{2} } \]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 4

Проверить справедливость формулы 12 из таблицы интегралов:

\[\int \frac{dx}{a^{2} -x^{2} } =\frac{1}{2a} \ln \left|\frac{a+x}{a-x} \right|+C,\, \, C=const.\]

Продифференцируем правую часть: $\frac{1}{2a} \ln \left|\frac{a+x}{a-x} \right|+C$.

$\left(\frac{1}{2a} \ln \left|\frac{a+x}{a-x} \right|+C\right)"=\frac{1}{2a} \cdot \frac{1}{\frac{a+x}{a-x} } \cdot \left(\frac{a+x}{a-x} \right)"=\frac{1}{2a} \cdot \frac{a-x}{a+x} \cdot \frac{a-x+a+x}{(a-x)^{2} } =\frac{1}{2a} \cdot \frac{a-x}{a+x} \cdot \frac{2a}{(a-x)^{2} } =\frac{1}{a^{2} -x^{2} } $Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 5

Проверить справедливость формулы 13" из таблицы интегралов:

\[\int \frac{dx}{\sqrt{a^{2} -x^{2} } } =\arcsin \frac{x}{a} +C,\, \, C=const.\]

Продифференцируем правую часть: $\arcsin \frac{x}{a} +C$.

\[\left(\arcsin \frac{x}{a} +C\right)"=\frac{1}{\sqrt{1-\left(\frac{x}{a} \right)^{2} } } \cdot \frac{1}{a} =\frac{a}{\sqrt{a^{2} -x^{2} } } \cdot \frac{1}{a} =\frac{1}{\sqrt{a^{2} -x^{2} } } \]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 6

Проверить справедливость формулы 14 из таблицы интегралов:

\[\int \frac{dx}{\sqrt{x^{2} \pm a^{2} } } =\ln |x+\sqrt{x^{2} \pm a^{2} } |+C,\, \, C=const.\]

Продифференцируем правую часть: $\ln |x+\sqrt{x^{2} \pm a^{2} } |+C$.

\[\left(\ln |x+\sqrt{x^{2} \pm a^{2} } |+C\right)"=\frac{1}{x+\sqrt{x^{2} \pm a^{2} } } \cdot \left(x+\sqrt{x^{2} \pm a^{2} } \right)"=\frac{1}{x+\sqrt{x^{2} \pm a^{2} } } \cdot \left(1+\frac{1}{2\sqrt{x^{2} \pm a^{2} } } \cdot 2x\right)=\] \[=\frac{1}{x+\sqrt{x^{2} \pm a^{2} } } \cdot \frac{\sqrt{x^{2} \pm a^{2} } +x}{\sqrt{x^{2} \pm a^{2} } } =\frac{1}{\sqrt{x^{2} \pm a^{2} } } \]

Производная получилась равной подынтегральной функции. Следовательно, формула верна.

Пример 7

Найти интеграл:

\[\int \left(\cos (3x+2)+5x\right) dx.\]

Воспользуемся теоремой об интеграле суммы:

\[\int \left(\cos (3x+2)+5x\right) dx=\int \cos (3x+2)dx +\int 5xdx .\]

Воспользуемся теоремой о вынесении постоянного множителя за знак интеграла:

\[\int \cos (3x+2)dx +\int 5xdx =\int \cos (3x+2)dx +5\int xdx .\]

По таблице интегралов:

\[\int \cos x dx=\sin x+C;\] \[\int xdx =\frac{x^{2} }{2} +C.\]

При вычислении первого интеграла воспользуемся правилом 3:

\[\int \cos (3x+2) dx=\frac{1}{3} \sin (3x+2)+C_{1} .\]

Следовательно,

\[\int \left(\cos (3x+2)+5x\right) dx=\frac{1}{3} \sin (3x+2)+C_{1} +\frac{5x^{2} }{2} +C_{2} =\frac{1}{3} \sin (3x+2)+\frac{5x^{2} }{2} +C,\, \, C=C_{1} +C_{2} \]

В школе у многих не получается решить интегралы или возникают какие-либо трудности с ними. Данная статья поможет вам в этом разобраться, так как в ней вы найдете все таблицы интегралов .

Интеграл является одним из главных вычислений и понятием в математическом анализе. Его появление получилось от двух целей:
Первая цель - восстановить функцию с помощью ее производной.
Вторая цель - вычисление площади, находящейся на расстоянии от графика к функции f(x) на прямой где, а больше или равна х больше или равен b и ось абсцисс.

Данные цели подводят нас к определенным и неопределенным интегралам. Связь между данными интегралами лежит в поиске свойств и вычислении. Но все течет и все меняется со временем, находились новые пути решения, выявлялись дополнения тем самым приводя определенные и неопределенные интегралы к иным формам интегрирования.

Что такое неопределенный интеграл спросите Вы. Это первообразная функция F(x) одной переменной x в интервале а больше х больше b. называется любой функцией F(x), в данном интервале для любого обозначения х, производная равняется F(x). Понятно что F(x) первообразная для f(x) в промежутке а больше х больше b. Значит F1(x) = F(x) + C. С -является любым постоянным и первообразным для f(x) в данном интервале. Данное утверждение обратимо, для функции f(x) - 2 первообразные отличаются только постоянной. Опираясь на теорему интегрального исчисления получается, что каждая непрерывная в интервале a

Определенный интеграл понимается как предел в интегральных суммах, или в ситуации заданной функции f(x) определенной на некоторой прямой (а,b) имея на нем первообразную F, означающую разность ее выражений в концах данной прямой F(b) - F(a).

Для наглядности изучения данной темы, предлагаю посмотреть видео. В нем подробно рассказывается и показывается как находить интегралы.

Каждая таблица интегралов сама по себе очень полезна, так как помогает в решении конкретного вида интегралов.






Все возможные виды канцтоваров и не только. Вы можете приобрести через интернет-магазин v-kant.ru. Либо просто перейдите по ссылке Канцтовары Самара (http://v-kant.ru) качество и цены Вас приятно удивят.

Похожие публикации